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Abstract

In this paper, we introduce and examine some properties of three sequence spaces defined using

lacunary sequence and invariant mean which generalize several known sequence spaces.
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1 Introduction

Let w be the set of all sequences real or complex and `∞ denote the Banach space of bounded

sequences ξ = {ξk}∞k=0 normed by ||ξ|| = supk≥0 |ξk|. Lorentz [4] proved that

ĉ =

{
x : lim

m→∞

1

m+ 1

m∑
i=0

ξn+i exists uniformly in n

}
.

Let σ be a one-to-one mapping of the set of positive integers into itself. A continuous linear

functional ϕ on l∞ is said to be an invariant mean or a σ- mean if and only if

1. ϕ(ξ) ≥ 0 when the sequence ξ = (ξn) has ξn ≥ 0 for all n.

2. ϕ(e) = 1, where e = (1, 1, . . .) and

3. ϕ
(
ξσ(n)

)
= ϕ(ξ) for all ξ ∈ l∞.

For a certain kinds of mapping σ every invariant mean ϕ extends the limit functional on space

c, in the sense that ϕ(ξ) = lim ξ for all ξ ∈ c. Consequently, c ⊂ Vσ where Vσ is the bounded

sequences all of whose σ-means are equal, ( see, [17]).

If ξ = (ξk), set Tξ = (Tξk) =
(
ξσ(k)

)
it can be shown that (see, Schaefer [12]) that

Vσ =

{
ξ ∈ l∞ : lim

k
tkm (ξ) = Le uniformly in m for some L = σ − lim ξ

}
(1.1)

where

tkm(ξ) =
ξm + Tξm + . . .+ T kξm

k + 1
and t−1,m = 0
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We say that a bounded sequence ξ = (ξk) is σ-convergent if and only if ξ ∈ Vσ such that

σk(n) 6= n for all n ≥ 0, k ≥ 1.

Just as the concept of almost convergence lead naturally to the concept of strong almost conver-

gence, σ- convergence leads naturally to the concept of strong σ-convergence. A sequence ξ = (ξk)

is said to be strongly σ-convergent (see Mursaleen [8]) if there exists a number L such that

1

k

k∑
i=1

∣∣ξσi(m) − L
∣∣→ 0 (1.2)

as k → ∞ uniformly in m. We write [Vσ] as the set of all strong σ- convergent sequences. When

(1.2) holds we write [Vσ]− limx = L. Taking σ(m) = m+ 1, we obtain [Vσ] = [ĉ], which is defined

in [5], so strong σ- convergence generalizes the concept of strong almost convergence. Note that

[Vσ] ⊂ Vσ ⊂ l∞.

Spaces of strongly summable sequences were discussed by Kuttner [3], Maddox [5] and others.

The invariant summable sequences have been discussed by Schafer [17] and some others. Mursaleen

[9] have considered absolute invariant convergent and absolute invariant summable sequences. Also

the strongly invariant summable sequences was studied by Saraswat and Gupta[11]. Some works

related to invariant summable sequences can be found in [10, 12, 13, 14, 15]. The goal of this paper

is to study the spaces of strongly lacunary σ− summable sequences, which naturally come up for

investigation and which will fill up a gap in the existing literature.

Let θ = (kr) be the sequence of positive integers such that

i) k0 = 0 and 0 < kr < kr+1

ii) hr = (kr − kr−1)→∞ as r →∞.
Then θ is called a lacunary sequence. The intervals determined by θ are denoted by I =

(kr − kr−1]. The ratio kr
kr−1

will be denoted by qr (see, Freedman et al [2]).

Recently, Das and Mishra [1] defined Mθ, the set of almost lacunary convergent sequences, as

follows:

Mθ =

{
ξ : there exists l such that uniformly in i ≥ 0, lim

r→∞

1

hr

∑
k∈Ir

(ξk+i − l) = 0

}
.

Let T = (tnk) be an infinite matrix of nonnegative real numbers and p = (pk) be a sequence

such that pk > 0. We write Tξ = {Tn(ξ)} if Tn(ξ) =
∑
k tnk |ξk|

pk converges for each n. We write.

drn(ξ) =
1

hr

∑
i∈Ir

Tσn(i)(ξ) =
∑
k

t(n, k, r) |ξk|pk

where

t(n, k, r) =
1

hr

∑
i∈Ir

tσn(i),k.
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If we take σ(n) = n+ 1

drn(ξ) =
1

hr

∑
i∈Ir

Tσn(i)(ξ) =
∑
k

t(n, k, r) |ξk|pk

and

t(n, k, r) =
1

hr

∑
i∈Ir

tσn(i), k.

reduces to

trn(ξ) =
1

hr

m∑
i=0

Tn+i(ξ) =
∑
k

t(n, k, r) |ξk|pk

where

t(n, k, r) =
1

r

m∑
i=0

tn+i,k.

We define the following sequence spaces:

[
T(θ,σ), p

]
0

= {ξ : drn(ξ)→ 0 uniformly in n} ;[
T(θ,σ), p

]
= {ξ : drn(ξ − le)→ 0 for some l uniformly in n}

and [
T(θ,σ), p

]
∞ =

{
x : sup

n
drn(ξ) <∞

}
.

The sets [T(θ,σ), p]0, [T(θ,σ), p] and [T(θ,σ), p]∞ will be respectively called the spaces of strongly

lacunary σ -summable to zero, strongly lacunary σ -summable and strongly lacunary σ- bounded

sequences. If σ(n) = n + 1, the above spaces reduces to the following sequence spaces which are

introduced in [16]. [
T̂θ, p

]
0

= {ξ : trn(ξ)→ 0 uniformly in n} ;[
T̂θ, p

]
= {ξ : trn(ξ − le)→ 0 for some l uniformly in n}

and [
T̂θ, p

]
∞

=

{
ξ : sup

n
trn(ξ) <∞

}
.

If ξ is strongly lacunary σ- summable to l we write ξk → l[T(θ,σ), p]. A pair (T, p) will be called

strongly lacunary σ - invariant regular if

ξk → l⇒ ξk → l[T(θ,σ), p].
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2 The main results

Before giving main theorem we have some propositions:

Proposition 2.1. If p ∈ `∞, then [T(θ,σ), p]0, [T(θ,σ), p] and [T(θ,σ), p]∞ are linear spaces over C.

Proof. We consider only [T(θ,σ), p]. If H = sup pk and K = max(1, 2H−1) we have [see Maddox [5],

p. 346].

|tk + bk|pk 5 K(|ak|pk + |bk|pk) (2.1)

and for λ ∈ C,
|λ|pk 5 max(1, |λ|H). (2.2)

Suppose that ξk → l[T(θ,σ), p], ρk → l[T(θ,σ), p] and λ, µ ∈ C. Then we have

drn(λξ + µρ− (λl + µl´)e) 5 KK1drn(ξ − le) +KK2dmn(ρ− l´e)

where K1 = sup |λ|pk and K2 = sup |µ|pk , and this implies that λξ+µρ→
(
λl + µl

)́
[T(θ,σ), p]. This

completes the proof.

We have

Proposition 2.2. [T(θ,σ), p] ⊂ [T(θ,σ), p]∞, if

||T || = sup
r

∑
k

t (n, k, r) <∞. (2.3)

Proof. Assume that ξk → l[T(θ,σ), p] and (2.3) holds. Now by the inequality (2.1),

drn(ξ) = dmn(ξ − le+ le) (2.4)

5 Kdrn(ξ − le) +K
∑
k

t (n, k, r) |l|pk

5 Kdrn(ξ − le) +K(sup |l|pk)
∑
k

t (n, k, r) .

Therefore ξ ∈ [T(θ,σ), p]∞ and this completes the proof.

Remark 2.3. Some known sequence spaces are obtained by specializing T and therefore some of

the results proved here extend the corresponding results obtained for the special cases.

Proposition 2.4. Let p ∈ `∞, then [T(θ,σ), p]0 and [T(θ,σ), p]∞ (inf pk > 0) are linear topological

spaces paranormed by g defined by

g(ξ) = sup
r,n

[drn(ξ)]
1/M

where M = max(1, H = sup pk). If (2.3) holds, then [T(θ,σ), p] has the same paranorm.
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Proof. Clearly g(0) = 0 and g(ξ) = g(−ξ). Since M = 1, by Minkowski’s inequality it follows that

g is subadditive. We now show that the scalar multiplication is continuous. It follows from the

inequality (2.2) that

g(λξ) 5 sup |λ|pk/M g(ξ).

Therefore ξ → 0 ⇒ λξ → 0 (for fixed λ). Now let λ→ 0 and ξ be fixed. Given ε > 0 ∃N such that

drn(λξ) < ε/2 (∀n,∀r > N) . (2.5)

Since dr,n(ξ) exists for all r, we write

drn(ξ) = K(r), (1 5 r 5 N)

and

δ =

(
ε

2K(r)

)1/pk

.

Then |λ| < δ,

drn(λξ) <
ε

2
(∀n, 1 5 r 5 N) . (2.6)

It follows from (2.5) and (2.6) that

λ→ 0⇒ λξ → 0 (ξ fixed)

This proves the assertion about [T(θ,σ), p]0. If inf pk = θ > 0 and 0 < |λ| < 1, then ∀ξ ∈ [T(θ,σ), p]∞,

gM (λξ) 5 |λ|θ gM (ξ).

Therefore [Tθ, p]∞ has the paranorm g. If (2.3) holds it is clear from Proposition 2.2 that g(ξ) exists

for each ξ ∈ [T(θ,σ), p]. This completes the proof.

Remark 2.5. It is clear that g is not a norm in general. But if pk = p ∀k,then clearly g is a norm

for 1 5 p 5∞ and a p− norm for 0 < p < 1.

Proposition 2.6. [T(θ,σ), p]0 and [T(θ,σ), p]∞ are complete with respect to their paranorm topolo-

gies [T(θ,σ), p] is complete if (2.3) holds and∑
k

t(n, k, r)→ 0 uniformly in n. (2.7)

The proof is easy and we omit it.

Combining the above proposition we have the main result.

Theorem 2.7. Let p ∈ `∞. Then [T(θ,σ), p]0 and [T(θ,σ), p]∞ (inf pk > 0) are complete linear

topological spaces paranormed by g. If (2.3) and (2.7) hold then [T(θ,σ), p] has the same property.

If further pk = p for all k, they are Banach spaces for 1 5 p < ∞ and p−normed spaces for

0 < p < 1.
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We now give locally boundedness and q−convexity for the spaces of strongly almost summable

sequences. We start with some definitions. For < q 5 1 a non-void subset U of a linear space is

said to be absolutely q−convex if ξ, ρ ∈ U and |γ|q + |µ|q ≤ 1 together imply that γξ+µρ ∈ U . It is

clear that if U is absolutely q−convex, then it is absolutely t− convex for t < q. A linear topological

space X is said to be q− convex if every neighbourhood of 0 ∈ X contains an absolutely q−convex

neighbourhood of 0 ∈ X. The q−convexity for q > 1 is of little interest, since X is q−convex for

q > 1 if and only if X is the only neighbourhood of 0 ∈ X, [see Maddox and Roles [6]]. A subset

B of X is said to be bounded if for each neighbourhood U of 0 ∈ X there exists an integer N > 1

such that B ⊆ NU . X is called locally bounded if there is a bounded neighbourhood of zero.

We have

Theorem 2.8. Let 0 < pk 5 1. Then [T(θ,σ), p]0 and [T(θ,σ), p]∞ are locally bounded if inf pk > 0.

If (2.3) holds, then [T(θ,σ), p] has the same property.

The proof of the above theorem follows on the same lines as adopted by Savas [16]. So we

omitted it.

It is known that every locally bounded linear topological space is q− convex for some q such

that 0 < q 5 1. But the following theorem gives exact conditions for q−convexity.

Theorem 2.9. Let 0 < pk 5 1.Then
[
T(θ,σ), p

]
0

and
[
T(θ,σ), p

]
∞ are q−convex for all q where

0 < q < lim inf pk. Moreover, if pk = p 5 1 ∀k, then they are p−convex.
[
T(θ,σ), p

]
has the same

properties if (2.3) holds.

Proof. We shall prove the theorem only for
[
T(θ,σ), p

]
∞. Let

[
T(θ,σ), p

]
∞ and q ∈ (0, lim inf pk).

Then ∃k0 such that q 5 pk (∀k > k0). Now define

gσ(ξ) = sup
r,n

[
k0∑
k=1

t(n, k, r) |ξk|q +

∞∑
k=k0+1

t(n, k, r) |ξk|pk
]

.

Since q 5 pk 5 1 (∀k > k0), gσ is subadditive. Further for 0 < |γ| 5 1,

|γ|pk 5 |γ|q (∀k > k0)

Therefore for such γ we have

gσ(γξ) 5 |γ|q gσ(x).

Now for 0 < δ < 1,

U = {x : gσ(ξ) 5 δ}

is an absolutely q−convex set, for |γ|q + |µ|q 5 1 and ξ, ρ ∈ U imply that

gσ(γξ + µρ) 5 gσ(γξ) + gσ(µρ) 5 |γ|q gσ(ξ) + |µ|q gσ(ρ)

5 (|γ|q + |µ|q) δ 5 δ.
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If pk = p (∀k), then for 0 < δ < 1,

V = {x : gσ 5 δ}

is an absolutely p−convex set. This can be prove by the same analysis and therefore we omit the

details. This completes the proof.
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